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ABSTRACT

Drug discovery and developmen t consists of a series of processes starting with the demonstration of pharmacologica l effects in experimental cell and
animal models and ending with drug safety and ef� cacy studies in patients. A main limitation is often the unacceptable level of toxicity with the liver
as the primary target organ. Therefore, approaches to study hepatic toxicity in the early phase of drug discovery represent an important step towards
rational drug development . A variety of in vitro liver models have been developed in the past years. Next to their use in drug development , they can also
be applied to study environmenta l toxins and their hepatotoxicity. The 3 main approaches are ex vivo isolated and perfused organ models, precision-cut
liver slices and cell culture models. Although the advantage of whole organ perfusions is based on the assessment of physiologic parameters such
as bile production and morphologi c parameters such as tissue histology, cell culture models can be ef� ciently used to assess cellular metabolism,
cytotoxicity and genotoxicity. The advantage of precision-cut liver slices is based on the juxtaposition of cellular assays and tissue morphology. None
of these models can be compared as they all focus on different � elds of hepatoxicology. For the future, the ideal setup for testing the hepatic toxicity
of a new compound could of primary studies in cell or slice cultures to assess cellular effects and secondary studies using ex vivo perfused organs to
examine gross organ function parameters and histology.
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INTRODUCTION

The development of new drugs consists of a variety of
single steps leading from the discovery of pharmacological
effects in cell and animal models to the assessment of toxic-
ity and � nally to the demonstration of ef� cacy and safety in
humans (46, 90). Although the process that leads to the dis-
covery of potent pharmacological effects has been reduced
by rational drug designing in the past years, a variety of prob-
lems may occur in the preclinical and clinical development
and lead to the failure of a compound. One of the most promi-
nent factors that limits drug development is based on the com-
pound’s toxicity towards human health and therefore, using
the � eld of investigational toxicology, different models have
been established to assess this factor in an early stage.

Due to its anatomical position between the gastro-intestinal
tract and the systemic circulation and its biochemical prop-
erties, the liver plays an important role in the metabolism
of exogenous substances. A large amount of both nutrients
and noxious substances reach the liver through intestinal up-
take and portal vein � ow. Next to major hepatic functions
such as the uptake, storage, and release of peptides, amino
acids, lipids, carbohydrates and vitamins, the liver is the
principal organ in biotransformation processes of exogenous
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substances. Among them, numerous xenobiotics may have
toxic effects. Apart from its role in the detoxication process
of xenobiotics the liver may also convert substances into toxic
products or be subject to the effects of compounds that are
hepatotoxic, such as ethionine or galactosamine (95).

Hepatic drug metabolism occurs in the hepatocytes that
represent with 80% of the total volume and 60% of the total
cell number the predominant cell type found in the liver (44).

The potential of drug-based or environmental hepatotoxins
to generate liver cell injury results from a complex interaction
of cellular processes and is based on direct or indirect reac-
tions of the toxins with basic hepatocyte constituents such
as proteins, lipids, RNA, or DNA. The most frequent hep-
atic reaction towards toxic effects is hepatic steatosis but a
variety of many other lesions are known (96). In general, the
reactions leading to these organ injuries all involve speci� c
sequences that can be analyzed at the molecular, cellular, or
organ level. Whereas in vivo studies on hepatotoxicity are
limited by animal welfare/ethical concerns and dif� culties
to distinguish primary and secondary toxic effects, in vitro
liver preparations are increasingly used as they offer different
approaches on all levels of investigational toxicology.

In Vitro Liver Models
There are 3 different major models to study the hepato-

toxic effects: The most frequently used model is the liver
cell culture model that can be applied to examine effects of
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TABLE 1.—Advantages and limitations of different in vitro liver models.

Model Advantages Limitations

Isolated All species including humans No bile measurement
cells Whole livers or biopsies as source No cell-to-cell interaction

Information on cellular toxicity No preserved anatomy
Cryopreservation
Several compounds at

different concentrations
Liver Lobular structure partly preserved No bile measurement

slices All species including humans No cell-to-cell interaction
Whole livers or biopsies as source No preserved anatomy
Information on cellular toxicity
Several compounds at

different concentrations
Isolated Closest to in vivo conditions Short-term viability (2–4 h)

organs Anatomy preserved Only a few compounds can be
Bile � ow preserved assessed with one organ
Hematodynamic parameters No studies on human liver

can be assessed High number of animals used
Complexity of the setup

drugs/toxins on isolated hepatocytes on the cellular level. In
contrast, isolated perfused organs display an approach to-
wards the assessment of organ physiology and morphology
and represent the closest model to the in vivo situation. As
a bridge between these two approaches, precision-cut liver
slices can be used to examine cellular aspects of liver toxi-
cology in a tissue-speci� c background.

Each of these approaches has a number of advantages and
disadvantages and therefore based on the speci� c toxicologi-
cal question, a model selection should be performed when
investigating drug- or environmental substances-induced
hepatic toxicity (Table 1).

Isolated Liver Cell Models
To date, cultured liver cells represent the most frequently

used in vitro liver cell model. These models usually consist
of isolated hepatocytes and have been established as valid
in vitro toxicological models for many years (4). Next to
rat and other rodent hepatocytes, even human-cultured hep-
atocytes have been established as models to study hepatic
drug metabolism and genotoxic potential of substances (20,
21, 53). Also, the characteristics of human hepatocytes were
compared to other rodent and primate models (14, 38, 100).

The methodology of liver cell cultures has been improved
over the last years and currently, a variety of isolation, cul-
ture, and cryopreservation models have been established and
evaluated (99). Shortly after the � rst description of hepato-
cyte isolation by collagenase- and hyaluronidase-dissociation
(61, 62), new improvements were made by perfusing the liv-
ers in situ with the dissociating agents (12). Later, the pro-
tocol of the 2-step collagenase technique for rat hepatocytes
has been established (84, 85), which was later modi� ed (98)
and works well for short-term cultures of hepatocytes of a
variety of species including rat, monkey, pig, dog, rabbit,
and human. For long-term models, a variety of approaches
including addition of basement membrane (83, 88), culture
in a collagen sandwich (32, 65), or coculture with epithelial
cells (78) has been proposed.

To guarantee the survival of hepatocytes isolated from in-
dividual donors, cryopreservation or cold storage techniques
can be applied that lead to an inde� nite (23, 29) or 48-hour
(54, 77) extension, respectively. However, the viability of

stored cells is much lower than that of freshly isolated hepa-
tocytes and dependent on factors such as initial cell integrity,
ice crystal formation, and hypoxia during freezing and toxi-
city of cryopreservation substances.

In contrast to other liver cell types such as immortalized
hepatoma cell lines, hepatocytes have the capacity for bio-
transformation, which is crucial for toxicological studies.
However, they lose activity of speci� c systems such as cy-
tochrome P450 if compared to in vivo levels. Therefore spe-
ci� c strategies using the addition of matrix materials or agents
have been developed to maintain metabolizing activity (8, 9,
87). Studies addressing the metabolizing capacity of human,
rat, dog, and monkey cultured hepatocytes revealed that for
the model drug adinazolam, 24 hours after isolation the cells
still generated metabolites similar to those formed in vivo;
therefore, it was concluded that for at the least the � rst few
days, cultured hepatocytes may be used to identify potential
toxic metabolites (99).

Cultured hepatocytes have been used as applications in
investigative toxicology for a variety of questions so far. In
this respect, to investigate the mechanisms of hepatic toxic-
ity, a combination of cell functional and cytotoxicity assay
displays a useful approach. For cytotoxicity assays, propium
iodide uptake or lactate dehydrogenase (LDH) release and
for functional assays, levels of cytochrome P450 (13, 53)
or structural alterations (27) may be measured on a cellular
level. Based on these methodological aspects, a variety of
studies used cultured hepatocytes to study liver toxicology
(6, 7, 28, 93, 100, 101, 105).

A signi� cant disadvantage of hepatocyte cultures is the
absence of organ-speci� c cell-to-cell interactions. In this re-
spect, liver hepatocytes show a marked heterogeneity along
the porto-central axis regarding enzyme activity or subcel-
lular architecture resulting in phenotypes that alter within
different zones of the liver lobuli. This zonation also af-
fects drug-metabolizing enzymes such as some cytochrome
P450 isoenzymes, NADPH-cytochrome c reductase or UDP-
glucuronyl transferase enzymes (44, 45). Although only a
few drug-metabolizing enzymes have been reported in other
hepatic cell types such as endothelial, Kupffer, biliary epithe-
lial cells or � broblasts (66–68, 76, 82), their direct or indirect
role in drug-induced hepatotoxicity is well documented (33,
36, 60, 73).

Isolated Perfused Organs
In contrast to isolated hepatocyte models, the isolated per-

fused liver represents the closest in vitro model of the in
vivo situation. Since the � rst use of isolated perfused livers
for physiologic research (47) and for treatment of patients
with hepatic coma or prior to transplantation (2, 3, 22, 34),
a large number of studies have focused on the establishment
of valid isolated organ models. Contrary to kidney perfusion
models that were � rst established using a variety of small
animal models such as the rat (42) or rabbit (79), the � rst
liver perfusion setups were primarily based both on porcine
organs (31) and small animal organs (1, 56). The major ad-
vantages of the isolated perfused livers are the preservation
of the 3-dimensional organ structure with all its cell-to-cell
interactions and the possibility of real-time bile collection
and analysis. Furthermore, this model allows the study of
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hemodynamic parameters if blood is used as a perfusate
(24–26, 72).

So far, the rat model of isolated perfused liver has been
used in a variety of studies for the investigation of drug-
and chemical-induced hepatotoxicity. A variety of substances
have been examined including aliphatic alcohols (91), thioac-
etamide (71), acetaminophen (17), methacrylate (11), cy-
closporine (30), insecticides such as lindane or mirex (94,
104), phalloidin (16), solvents such as dimethylacetamide
(74), metals such as mercury, cadmium, copper, vanadium,
or aluminium (18, 92, 106), aromatic amines (5, 57), muscle
relaxants such as atracurium (19), or antibiotic agents such
as nitrofurantoin (86).

However, as small laboratory animal organ models such as
the rat model have signi� cant differences in organ size, func-
tion, and geometry compared to the human liver, isolated
perfused porcine, canine or bovine livers display a better ap-
proach to simulate human in vivo conditions. A variety of
different porcine liver perfusion models have been described
so far (2, 31, 37, 55, 64). In all these studies, the proper
assessment of liver viability is essential and it is generally
agreed that the levels of oxygen consumption and bile acid
production are reliable parameters.

Asanguineous perfusates were used in the majority of stud-
ies (2, 58, 59, 64) and only in a few studies, autologous blood
was used (10, 63, 81). In contrast to blood-free perfusion se-
tups, these studies allowed to assess hepatic parameters under
physiological perfusion conditions with autologous blood.
The blood pressure can be kept within physiological ranges
in both hepatic artery and portal vein as compared to human
parameters. In contrast, the continuously increasing levels of
AST, ALT, and LDH were suggested to be a result of model-
speci� c liver cell injury due to ischemic damage and hemol-
ysis after reperfusion injury, an effect, which has to be taken
into consideration in all ex vivo perfused organ models (37).

Altogether, the different models of isolated perfused livers
proved to be very complex in keeping organ function within
physiological ranges, and their functional integrity was never
maintained over a prolonged period. Furthermore, the estab-
lishment of these models is very expensive and ethical con-
cerns about animal welfare prevent a more widespread use.
However, future studies using organs from abattoirs may re-
solve ethical and economic problems. Also, the integration
of powerful morphological and molecular biological meth-
ods such as immunohistochemistry (52, 69), RT-PCR (51),
northern blotting (50), mRNA in situ hybridization (40, 49),
or uptake studies (48) could signi� cantly improve the impact
of perfused organs.

Precision Cut Liver Slices
In view of the limitations of cell culture models with miss-

ing cell-to-cell interactions and the complexity of isolated
perfused organs, new methods using liver slices were estab-
lished. Dating back to 1923, liver slices were � rst prepared by
Otto Warburg (35). The liver-slice models using precision-cut
slices that were established in past years (43, 75) retain tissue
organization and cell-to-cell matrix interactions such as per-
fused organs. However, bile � ow and functional parameters
such as portal � ow cannot be analyzed. Due to the develop-
ment of new tissue-slicer models, the main methodological
problems of the liver slices that are represented by the poor

FIGURE 1.—In vitro liver toxicology models for drug discovery and develop-
ment process.

diffusion of oxygen and nutrients have been improved. Now,
slices in dimensions of less than 250-l m thickness can be
prepared with minimal tissue trauma (89). Recent studies
demonstrated that the system can be used for periods of 2 to
3 days as a valid model to study hepatotoxicity and even
human tissues can be used after surgical or needle biopsy
removal (103).

Liver-slice models have been used in investigational
pathology to assess a number of hepatotoxic effects and a
variety of substances have been studied such as halogenated
hydrocarbons (41), paracetamol (70), a� atoxin B1 (102), en-
dotoxin (80), paraquat (97), cocaine (15), or metals such as
zinc (107). Although the main advantages are represented by
the preservation of lobular structures in contrast to cell cul-
tures and the possible application of biochemical and molec-
ular biological methods in contrast to organ perfusions, the
main disadvantages are based on the short viability and the
missing bile collection.

CONCLUSIONS

Over the last decades increasing costs of research coupled
with animal welfare concerns have led to the development
of new powerful in vitro models for the assessment of drug-
induced hepatotoxicity. These models can also be used for
the � eld of investigational pathology of environmental tox-
ins. The 3 main approaches are represented by liver cell cul-
ture models, precision-cut liver slices, and ex vivo isolated
and perfused organs. Each of these models has signi� cant
advantages with respect to speci� c scienti� c questions. Al-
though the advantage of whole organ perfusions is based on
the assessment of physiologic parameters such as bile pro-
duction and morphologic parameters such as tissue histology,
cell culture models can be ef� ciently used to assess cellular
metabolism, cytotoxicity, and genotoxicity and lead to a re-
duction of laboratory animal use. The major future challenges
will be to further improve the viability of each method, to
establish a useful link between them (Figure 1) and to in-
tegrate new promising techniques such as laser-assisted cell
harvesting (39).
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